

Freely unleash the potential of data

FineBI V5.1.5 Direct Connect Performance Test Report

Document version.	V1. 0
Last updated on.	2020-09-08
Author.	Performance Testing Group
Creation Date	2020-09-01

Revision record.

Vers ions	Modify date	Change Descript ion
V1.0	2020. 09. 08	Output first draft

Cata log

1 Overview	. 4
1.1 Purpose	. 4
1.2 Background	. 4
1.3 Noun Description	. 4
1.4 Scope	. 4
1.5 Conclusion	. 4
2 Test Environment	. 5
2.1 Test Networking	. 5
2.2 Server Configuration	. 5
2.3 Database configuration	. 5
2.4 FineBI Configuration	. 5
3 Test content and method	. 6
3.1 Test Range	. 6
3.2 Test content	. 6
3.2.1 Dashboard Scenes	. 6
1.Basic Features	. 6
2. Function Features	. 8
3. Chart	. 8
4. Excel Export	. 8
3.2.2 Self-service data sets	. 9
1.Single step - based on db/sql tables	. 9
2.Single step - excel based table	. 9

3. Simulation of combination scenarios	9
3.2.3 Concurrency	10
3.3 Testing Tools	10
4 Test results and analysis	10
4.1 Dashboard	10
4.1.1 Base feature preview time distribution	10
4.1.2 Function preview time distribution	11
4.1.3 Combined scene preview length distribution	12
4.1.4 Chart Preview Duration Distribution	13
4.1.4 Excel Export	15
1.Schedule Export	15
2. Grouped Table Export	15
3. Cross Table Export	16
4.3 Data Preparation	17
4.3.1 Self-service data sets	17
1.Single scene	17
2. Simulation of combination scenes	18
4.3.2 Excel data sets	19
4.4 Edit Preview Concurrency Test	21
4.4.1 Test scenario description	21
4.4.2 Test Results	22
1. Dashboard concurrency	22
2.Self-service data set concurrency	22

3. Hybrid scenario concurrency	23
4. Summary	24

1 Overview

1.1 Purpose

Summarize and report on the performance of FineBI 5.1.5 based on clickhouse, vertica direct connection.

1.2 Background

FineBI version 5.1.5 is released with a companion direct connect performance test report.

1.3 Noun Description

Noun	Desc ript ion
①Original table	The base tables added to the BI engine (added db database tables, sql datasets, or Excel datasets).
②Results Table	The result set of a self-help dataset, or a table made in a Dashboard (Dashboard).
③samples	The total number of iterations completed for the transaction.
490%Line	90% of the sample time did not exceed this value.

1.4 Scope

This test is based on clickhouse, vertica, and focuses on 5.1.5 self-service datasets, dashboards

(Dashboard) preview, concurrency, and other performance tests.

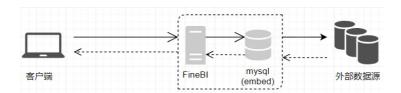
1.5 Conclusion

The dashboard preview is mainly affected by database queries, and the million grouped database queries take longer.

Excel export length and export file size are positively correlated. Self-help dataset 23.97% of scenario operation time is longer than 3

FanSoft Business Intelligence FineBI | Free to unleash the potential of data | Official website: www.finebi.com

seconds; performance of simulated scenarios is 40% better than the previous version.


The performance of Excel dataset is not much different than spider, and the upload speed of csv file is 7°8 times faster than the upload speed of excel file.

The concurrent findings are detailed in section 4.4 below.

2 Test Environment

2.1 Test network

Note: All machines are on the same LAN, which excludes the influence of network factors on the system.

2.2 Server Configuration

Applicat ion Deployme nt	Server Address	Operating System	CPU	Number of physical cores	Logic cpu number	Memory	Disk Type
FineBI	188. 168*80	CentOS 7	2 Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz	2*8	32	64G-96G	2T (mechani cal)
Mysql Confi gurat ion Libra ry	188. 168*215	CentOS 7	2 Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz	2*8	32	64G	2T (mechani cal)
clickhous e	188. 168*72	CentOS 7	1 block Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz	1*8	16	64G	2T (mechani cal)
vertica	188. 168*72	CentOS 7	1 block Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz	1*8	16	64G	2T (mechani cal)
Jmeter Negative Carrier	188. 168*13	Windows 7	1 block Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz	1*6	6	20G	300G(Mac hine machiner y)

2.3 Database Configuration

Database Type	Test scenario	Versions and parameters
	S	

Mysql Version	Configur ation Library	5.7 innodb_buffer_pool_size=1G innodb_log_file_size=48M max_connections=1000
clickhouse	Data source	20.3.8.53 mark_cache_size=5368709120 max_concurrent_queries=100 max_connections=4096 max_memory_usage=16G
vertica	Data source	Vertica Analytic Database 9.3.0

2.4 FineBI Configuration

FineBI Versions	Version 5.1.5 (0902)	
jvm memory	16G	
	maxThreads="800"	
Tomcat thread	minSpareThreads="100"	
count settings	maxSpareThreads="200"	
(server.xml)	acceptCount="500"	
Configuring	hibernate.initialSize=50	
library	hibernate.maxActive=500	
connection pools		
(db. properties)		

3 Test content and method

3.1 Test Range

Single-user request time, core order of magnitude scenario response time. Self-service dataset, dashboard (Dashboard) preview, editing concurrency.

3.2 Test content

Core order of magnitude description.

Number of rows of original table data	1 million		100 million
Number of groups (number of rows of grouped table results)	100	10,0 00	1 million
Number of data columns (results table_summary)	20(5 dimensions + 15 indicators)		
Number of data columns (result table_detail)	20		100

Raw table data, 10 million rows, 100 million rows.

The breakdown contains 20 columns and 100 columns.

Grouping table with 20 columns, all 5 dimensions and 15 indicators. The number of result rows in the grouping table is 100, 10,000, 1,000,000.

3.2.1 Dashboar

d scenarios 1.

Char acte rist ics	Desc ript ion
Subgroup Summary	Median, variance, standard deviation, number of records, averaging, ring period value, ring period ratio, maximum value
m . 1 . 1 . 1	

Basic features

Vacas Manth Internal	Voor Month Intorval Control			
Year Month Interval	Year Month Interval Control Year Month Interval Control Breakdown			
C				
Controls and	Dropdown tree dropdown operation			
dimensions sorted by	Drop down tree grouping table display			
other fields	Control sorts by other fields (text drop-down, ascending order)			
	Text drop-down operation			
	Dropdown tree dropdown operation			
	Drop down tree grouping table display			
	Custom sorting of control bound fields			
	Text drop-down operation			
	Row header fields a Ascending order by associated field b			
Control option values	Dropdown tree dropdown operation			
support filtering	Drop down tree grouping table display			
	The control option values support filtering (the text dropdown ends with			
	Drop down tree grouping table display			
	Belongs to 100 Dropdown tree dropdown operations			
	Belongs to 50 Dropdown tree dropdown operations			
	Control option values support filtering (text dropdown belongs to 100 items)			
	Control option values support filtering (text dropdown belongs to 50 items)			
	Control option values support filtering (text dropdown belongs to 50 items)			
	Control Binding Field Filtering Top 100			
	Control Binding Field Filtering Top 100 Dropdown Tree Dropdown Operations			
	Control Binding Field Filtering Top 100 Dropdown Tree Display			
	Control Binding Field Filtering Top 10			
	Control Binding Field Filtering Top 10 Dropdown Tree Dropdown Operations			
	Control Binding Field Filter Top 10 Dropdown Tree Display			
	Control Binding Field Filtering Top 50			
	Control Binding Field Filtering Top 50 Dropdown Tree Dropdown Operations			
	Control Binding Field Filtering Top 50 Dropdown Tree Display			
Schedule filtering	First 1000 items			
support TopN	First 10w entries			
Component Filtering	The detailed components belong to 100 items			
	The detailed components belong to 50 items			
	Aggregate components belong to 100 items			
	Aggregate components belong to 50 items			
	The grouping indicator filters the endings based on the text field			
	Set the end of the itemized text field to			
	The detail date field is set to not be between two dates			
	Aggregate indicator filtered by date field not between two dates			
	Breakdown 1 numeric field set between two numbers			
	Aggregate 1 numeric field set between two numbers			
	Dimension field filtering belongs to 100 items			
	Dimension field filtering belongs to 50 items			
	The grouping dimension filters the endings based on a dimension field			
	that is			
	Grouping table dimension fields to filter the first 100			
	Grouping table dimension fields to filter the first 10			
	Grouping table dimension fields to filter the first 50			
	The dimension filters the largest 100 based on a metric			
	The dimension filters the largest 10 based on a metric			
	The dimension filters the maximum of 50 based on a metric			
	Analysis of regional indicators set to filter the maximum of 100			
	Analysis of regional indicators set to filter the largest 10			
	Analysis of the regional indicators set to filter the largest 50			
I intraga				
Linkage	Indicator linkage operation			

•						
	Linkage passing filter conditions, indicator detail filtering					
	Dimensional linkage operation					
	Linkage delivery table header dimension filtering, table header					
	indicator filtering					
	Indicator dimension linkage					
	Indicator dimension linkage operation					
Filtering to	The cumulative value is calculated after sorting					
calculate sorting	All values are not computed twice after dimensional filtering					
priority	All values are calculated twice after dimensional filtering					
	All values in the group are not calculated twice after dimensional					
	filtering					
	All values in the group are calculated twice after dimensional					
	filtering					
	Cumulative values are calculated twice after dimensional filtering					
	Cumulative values within a group are calculated twice after dimensional					
	filtering					
	Ranking is calculated twice after dimensional filtering					
	Rankings are not calculated twice after dimensional filtering					
	Intra-group ranking is calculated twice after dimensional filtering					
	Intra-group ranking is not calculated twice after dimensional filtering					

2. Function Features

Characte ristics	Desc ript ion		
Function	Addition, subtraction, multiplication, division, numeric functions, text functions, date functions, logic functions Number, other functions		
Aggregat	Sum_agg, Avg_agg, Max_agg, Count_agg, Countd_agg, Median_agg, Stdev_agg, Var_agg		

3. Chart

Major Categories	Chart Subcateg ories	Display adaptation mode
Polar coordinate system graphs	Radar map	Standard adaptation
Right angle axis system graph	dashboards, filled maps, text, pie charts, rectangular blocks,	Standard adaptation Standard adaptation, holistic adaptation
Non-rectangular coordinate axis system graph	Pie charts, funnel charts, rectangular tree blocks, aggregated bubbles Charts, multi-layer pie charts, word clouds	Standard adaptation
Geographical coordinate system graphics	Point map, heat map, flow map	Standard adaptation

4. Excel Export

Characteri	Desc				
stics	ript				
	ion				
Schedule	Same columns (20 columns): Number of rows: 10,000, 500,000, 1,000,000, 5,000,000				
Export	Same number of rows (1 million): Number of columns: 10, 20, 50, 100				
Grouped	Without calculation: 20 columns of 100 subgroups, 10,000 subgroups, 350,000 subgroups				
	With calculations: number of de-duplicated records, median, variance, quick calculation - cumulative values, sorting, custom grouping, text controls				
	Without computation: 300 row dimensions 1200 column dimensions, original table 1 million rows, 5 million rows, 10 million rows				
Export	With calculations: number of de-duplicated records, median, variance, quick calculation - cumulative values, sorting, custom grouping, text controls				

3.2.2 Self-service data sets

1. Single step - based on db/sql table

Characte ristics	Desc ript ion
Subgroup Summary	Median, variance, standard deviation, averaging, number of records, deduplicated counting, maximum value, 1:1 custom grouping Summation
New column	Time Difference, Get Time, Text Grouping Assignment, Value Grouping Assignment, Formula
Filterin g	Text belongs to, text ends with, value between, non-empty, formula
join	Intersection merge, left merge, right merge, merge set merge
union	Top and bottom merge
Field Settings	Field renaming, field undisplay

2. Single step - based on excel table

Characte ristics	Desc ript ion		
Subgroup Summary	Sum, variance, average, record count, de-duplicate count		
New column	Get time, text grouping assignment, value grouping assignment, formula		
Filterin g	Text belongs to, text ends with, value between, non-empty, formula		
join	Intersection merge, left merge, right merge, and merge set merge		
union	Top and bottom merge		
Field Settings	Change name, cancel field		

3. Simulation of combination scenarios

Simulation of the combination of scenarios designed to add columns + filtering random combination of scenarios, involving 5 steps, 10 steps, 20 steps a total of 8 use cases. The new columns are all functionally added columns, and the operations involved in filtering and adding columns are shown below.

Characte	Desc	

ristics	ript				
	ion				
	text belongs to, date belongs to, text ending yes/no, value between, non-empty,				
Filterin	text contains/does not contain, value greater than,				
g	Before/after a date, value less than or equal to, date not equal to, date				
	between, value less than, text beginning with is, four formulae, function formula				
	POWER, PROMOTION, DATETONUMBER, LOWER, SWITCH, RADIANS, RAND, NVL, ACOS, SWITCH.				
New	SECOND, TODOUBLE, MID, ABS, YEAR, UPPER, IFP, LN, REGEXP, ASIN, CHAR, WEEKDAY,				
column	DATEDIF, AND, INT, DATEDELTA, OR, DATE, four formulae				

3.2.3 Concurrent

Dashboard concurrency: 10 dashboard previews of a single scene; 50, 100, 150, 200 concurrent tests, concurrency lasts 10 minutes

Self-service data set concurrency: select 5 self-service data sets from the self-service data set single scenario: Edit-Preview Last Step - Exit Data Prep Preview; select 3 self-service data sets from the combined scenario: Edit-Preview Last Step

Step - Click on Step 2 Preview - Exit Data Prep Preview; Pick 2 self-service datasets from the Excel dataset: Edit - Preview Last Step - Exit Data Prep Preview; Press test 10, 20, 30 concurrently, concurrently for 10 minutes

Hybrid scenario: 5 dashboards selected in dashboard concurrency, 2 self-service datasets in single scenario, 2 self-service datasets in hybrid scenario, and 1 Excel dataset in self-service dataset concurrency; 10, 20, 30 concurrency tested, concurrency lasts 10 minutes

3.3 Testing Tools

Browser chrome, compression test jmeter.

4 Test results and analysis

4.1 Dashboard

The test results are using the vertica database

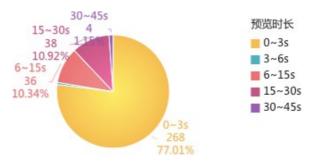
The page preview length is affected by the number of rows of the original table, the number of rows of the result table (grouped tables correspond to the number of groups), the number of columns of the result table, etc. The test results are all single-user operations with no other query tasks in the database (the response time will be slower when there are other query tasks or concurrency in the database).

4.1.1 Base feature preview time distribution

Order of magnitude description.

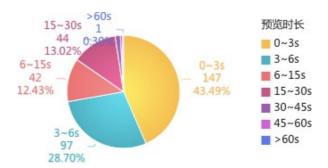
FanSoft Business Intelligence FineBI | Free to unleash the potential of data | Official website: www.finebi.com

The original table uses DB/sql tables with 10 million rows and 100 million rows of data


Detailed table with 20 and 100 columns

The base scenario produces a grouping table with 20 columns, all with 5 dimensions and 15 indicators. The number of rows in the grouping table is 100, 100

Test results.


10 million orders of magnitude: a total of 348 test results. Among them, 77.01% of scenes are displayed within 3s; 0.57% of scenes

3°6s; 10.34% scenarios 6°15s; 10.92% scenarios 15°30s; 1.15% scenarios 30°45s; database query time accounts for 90%°95% of the total response time; scenarios greater than 6s are mainly those with a grouping of 1 million.

Under the 100 million order of magnitude: there are 338 test results. Among them, 43.49% of scenes are displayed within 3s; 28.7% of scenes 3°6s; 12.43% of scenes 6°15s; 13.02% of scenes 15°30s; 1.48% of scenes 30°45s; 0.59% of scenes

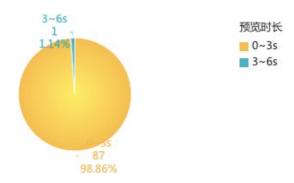
 $45^{\circ}60s$; 0.3% scenario is greater than 60s; database query time accounts for $90\%^{\circ}95\%$ of the total response time.

Scenes	Order of magnitud	Response time	Number of records	Percen tage of
Basic	10 million	Within 3s	268	77. 01%
scenes		3~6s	2	0. 57%
		6~15s	36	10. 34%
		15~30s	38	10. 92%
		30~45s	4	1. 15%
	100	Within 3s	147	43. 49%
	milli	3~6s	97	28. 7%
	on	6~15s	42	12. 43%
		15~30s	44	13. 02%
		30~45s	5	1. 48%
		45~60s	2	0. 59%
		Greater than 60s	1	0. 3%

Weak performance scenarios

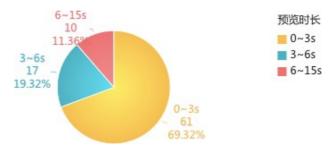
1 million grouping of all scenarios Rows 32k/columns 1200 Cross-tab preview

4.1.2 Function preview time distribution


Order of magnitude description.

The original table uses DB/sql table with 10 million rows and 100 million data.

The base scenario was created with a grouping table of 10 columns, all with 5 dimensions and 5 indicators. The number of rows in the grouping table is 10,000.


Test results.

Under 10 million orders of magnitude: there are 88 test results. Among them, 98.86% of scenarios are displayed within 3s; 1.14% of scenarios are 3~6s; database query time accounts for 90%~95% of the total response time.

100 million orders of magnitude: 82 test results in total. 69.32% of them previewed within 3s; 19.32% previewed $3^{\circ}6s$.

11.36% preview $6^{\sim}15s$; database query time accounts for $90\%^{\sim}95\%$ of the total response time.

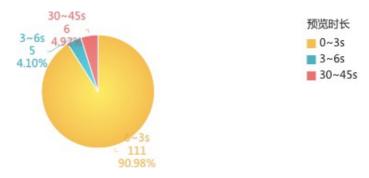
Scen es	Order of magnitude	Response time	Number of record	Percen tage of
			s	
Function	10 million	Within 3s	87	98. 86%
		3~6s	1	1. 14%
	100 million	Within 3s	61	69. 32%
		3~6s	17	19. 32%
		6~15s	10	11. 36%

Weak performance scenarios

Scen es	Sub- charac terist ics	Description	Number of original table rows	Number of groups
Func	Date	DATEDIF	100 million	10,000
tion	Functions	DAYSOFMONTH	100 million	10,000
		DAYVALUE	100 million	10,000
	Aggregation	countd_agg	10 million /	10,000
	functions		100 million	
		median_agg	10 million /	10,000
			100 million	

4.1.3 Combined scene preview length distribution

Order of magnitude description.


The original table uses a self-service dataset with 10 million rows and 100 million data.

The grouping table created by the combined scenario has 25 columns, all 10 dimensions and 15 indicators. The number of rows in the grouping table is 10,000.

Test results.

Under 10 million orders of magnitude: there are 122 test results. Among them, 90.98% scenarios are displayed within 3s; 4.1% scenarios are 3°6s; 4.92% scenarios are 30°45s; database query time accounts for 90%°95% of the total response time.

Scen es	Order of magnitude	Response time	Number of record	Percen tage of
Combinatio	10 million	Within 3s	111	90. 98%
n scenes		3~6s	5	4. 1%
		30~45s	6	4. 92%

Weak performance scenarios

Scenes	Sub-	Descriptio	Number of	Number of
	characteri	n	original	groups
	stics		table rows	
	Subgroup	Median	1 million	10,000/30
Combination	Summary			0,000
scenes		countd_agg	1 million	10,000/30
	Aggregation			0,000
	functions	median_agg	1 million	10,000/30
				0,000

4.1.4 Chart Preview Duration Distribution

Test scenario description.

The test template involves function points containing various diagrams, as detailed in the scenarios in section 3.2.1.

The page preview length is affected by the number of original table rows, the number of result table rows (grouping), and the number of result table columns. The test results are for single-user operation.

Grouping logic: All dimension fields in the analysis area are involved in the fine-grained (grouping) division, and the division logic is the

same as the grouping table logic, that is, the effect of dragging in dimension fields in the attribute area is equivalent to dragging in dimension fields in the grouping table; the grouping order is from left to right, from top to bottom, and the horizontal and vertical axes take precedence over the attribute panel.

Order of magnitude description.

The original table uses DB/sql tables with 10 million rows of data.

All scenes are produced in groups of 500, 5000, 30,000, and 1,000,000.

All scenarios use dimension fields including: 2 dimension fields, 3 dimension fields, and 5 dimension fields.

All scenarios use 1 indicator field.

Test results.

Under the 10 million order of magnitude, there are 128 test scenes, 37.12% of which are within 3s, 0.32% are 3°6s, 19.91% are 6°15s, 19.12% are 15°30s, and 23.55% are more than 30s.

Weak performance scenarios

Basic scenes

Chart Broad Category	Chart Subcategori es	Computing Scenarios	Response time s
		Number of de-duplicated records + table header filtering	48-52
Coordinate	Dashboard, pie	Quick Calculation	40-42
axis system graphics	chart. Line graphs,	TOPN Filtering	36-38
Praphron	bar graphs	Aggregation method (mean, maximum, minimum, standard deviation, variance)	17-19

Big Data Scenarios

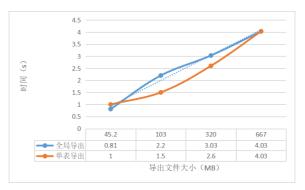
Major Categories	Chart Subcategories	Display adaptation mode	Number of groups	Response time s
Polar coordinate system graphs	Radar diagram	All modes	1 million	7
	Heat points, funnel charts,	Standard adaptation	1 million	6~10
Coordinate axis system graphics	dashboards, filled maps, text, pie charts, rectangular blocks, points, bars, lines, areas	Width-adapted, height-adapted Response, overall	1 million	6 [~] 10
		adaptation		

Non-coordinate axis system graphics	Pie charts, funnel charts, rectangular tree blocks, aggregated bubble charts, multi-layer pie charts, word clouds	All modes	1 million	6 [~] 8
Geographical coordinate system graphics	Point map, heat map, flow map	All modes	1 million	10 [~] 11

4.1.4 Excel Export

1. Schedule Export

Order of magnitude description.


Keep 20 columns constant and test 10,000 rows, 500,000 rows, 1,000,000 rows, 5,000,000 rows

Keep 1 million rows constant and test 10, 20, 50, 100 columns

Test results.

When the number of rows is the same, the export time is positively correlated with the number of columns

When the number of columns is the same, the length of the export is positively correlated with the number of rows.

2. Grouped Table Export

Order of magnitude description.

The original table has 10 million rows and 20 columns, and the result table has 100 rows, 10,000 rows, and 350,000 rows.

Test results.

Grouped table export without calculation: export time is proportional to file size, within 2 seconds for 10,000 groups and 29 seconds for 350,000 groups. Export length with calculations: similar to the export length without calculations, except for the custom group export length of 4-5 seconds and the six component export length of 13 seconds.

Scenes	Number of groups	Export Method	File Size	Export time(s)
	100	Global Export	59. 5K	1.05
		Single Table	20. 4k	0. 52

Grouping table		Export		
(without calculation)		Global	1.54M	1.81
carcuration)	10,000	Export		
		Single	1.51M	1.24
		Table		
-		Export		
	350,000	Global	45.1M	29. 54
	550,000	Export	45 434	05.50
		Single Table	45.1M	27. 53
		Export		
	10.000		1 500	0 50
counted_agg	10,000	Global Export	1.52M	0. 59
	10.000		1 401	0.00
	10,000	Single Table	1.49M	0. 29
		Export		
	10.000		1.554	0.15
Variance	10,000	Global	1.77M	2. 17
varrance		Export		
	10,000	Single	1.74M	1.66
		Table		
		Export		
Quick	10,000	Global	1.64M	1.89
Calculation		Export		
(Cumulative	10,000	Single	1.57M	1.40
value)		Table		
		Export		
Sort by	10,000	Global	1.60M	1.87
SOLE BY	10.000	Export	1 571	1 47
	10,000	Single Table	1.57M	1.47
		Export		
	10,000	Global	7.4M	4.98
Customized		Export		
grouping	10,000	Single	7.38M	4.74
		Table		
		Export		
	10,000	Global	1.53M	0.59
Text control +	*	Export		
grouping table	10,000	Single	1.51M	0.29
	10,000	Table	1. O1M	0.23
		Export		
Civ componerts	10,000	Global	1.4 OM	12 65
Six components	10,000	Export	14.2M	13. 65
		rvhot r		

3.Cross Table Export

Order of magnitude description.

Cross-tabulation without calculation: column grouping 1300, row grouping 300, original table 1 million rows, 5 million rows, 10 million rows
Cross-tabulation: column grouping 1300, row grouping 300, original table 10

million rows

Test results.

Export time with calculation: similar to export time without calculation except \$63-14\$ seconds for de-duplicated records and 18 seconds for six components

Export length and file size are positively correlated

					correlated	ъ.
Sub- characteristic s	Number of original table rows	Column groupi ng	Row groupi ng	Description	File Size	Export duration (s)
	100w	1300	300	Global Export	15.7M	0.95
Cross-				Single Table Export	15.7M	0.63
tabulatio n	500w	1300	300	Global Export	15.7M	2.67
(without calculati on)				Single Table Export	15.7M	2.29
	1kw	1300	300	Global Export	15.7M	1.18
				Single Table Export	15.7M	0.87
counted_agg	1kw	1300	300	Global Export	15.7M	14. 18
			300	Single Table Export	15.7M	13. 76
Variance	1kw	1300	300	Global Export	15.9M	1.39
			300	Single Table Export	15.9M	0.99
Quick calculation	1kw	1300	300	Global Export	22.5M	1.31
(cumulative) (Value)			300	Single Table Export	22.5M	0.84
Sort by	1kw	1300	300	Global Export	15.8M	1.26
			300	Single Table Export	15.8M	0.99
Customized	1kw	1300	300	Global Export	17.3M	1.69
grouping			300	Single Table Export	17.3M	1 .16

Text control	1kw	1300	300	Global Export	15.7M	0.59
groupin g table			300	Single Table Export	15.7M	0.29
Six components	1kw	1300	300	Global Export	84.7M	18. 08

4.3 Data Preparation

Note: The test results are all single-user operations (concurrent operations, the length of time will slow down); directly connected data processing users and data analysis users in the operation of no difference. The following are the results of the operation with data processing users.

4.3.1 Self-

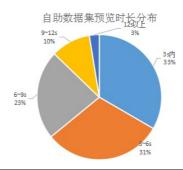
service dataset

1. single scene

Test scenario description.

The self-service data sets are all single-step and involve only one function point, including grouping summary, adding new columns, filtering, merging, and field setting, see Section 3.2.2 for detailed scenarios.

Use the clickhouse database.


Scenes	Number of rows	Numbe r of colum ns	Number of groups
Grouping Summary Scenarios	1 million	20 [~] 30	10 dimensions: 10,000 groups
Other Scenes	Small table 1 million, 5 million Large table 10 million	20~30	-

Self-service dataset editing test results.

A total of 39 preview lengths were measured, 6which about 33% of the scenes

were within 3s, 31% were 3-6s, 23% were 6-9s, 10% were 9-12s, and 3% were more than 12s.

Scen	Preview	Number	Perc
es	Length	of	enta
		record	ge
		S	of
Self-service	0~3	21	33%
data sets	seconds		
	3~6	7	31%
	seconds		
	6~9	11	23%
	seconds		
	9 [~] 12	3	10%
	seconds		
	12	3	3%
	seconds or		
	more		

Scenes longer than 9 seconds

Scenes	Operation steps
Grouping summary (10,000 groups) - summing, de-duplicating counts	Click to preview
Group summary (300,000 groups) - de-duplicate counts, standard deviation, summation	Click to preview

2. Simulation of combination scenarios

Test scenario description.

The new column+filter random combination involves 5 steps, 10 steps, and 20 steps. topN and average related functions are not supported by direct connection, so they are not involved in the simulation scenario testing. See Section 3.2.2 for detailed scenario descriptions.

Use the clickhouse database.

Order of magnitude description.

The original table has 10 million rows and 25 columns before adding new columns

Test results.

The preview time for each step of each scene is less than 3s, which is $1^{\sim}2s$ performance improvement over the 0803 version.

Complex dataset combination scenarios that are more influenced by db

A. 5 Step test results

In each step of each scene in the 5-step process, 80% of the previews were less than 2s long, and 20% of the previews were longer than 2s, but not more than 3s.

Scenes	Step 1	Step 2	Step 3	Step 4	Step 5
	Preview	Preview	Preview	Preview	Preview
2 Add +3 Filtering	2.05s	2.05s	2.05s	2. 23s	1.67s
3 Add +2 Filtering	1.81s	1. 92s	1.61s	1.56s	2. 02s
4 Add +1 Filter	1.77s	1.92s	1.79s	1.88s	1. 76s
1 Filter +2 Add +2	1.56s	1.68s	1.99s	1.82s	1.81s
Filter					
2 Add+2 Filter+1	1.87s	2.08s	1.60s	1.39s	1. 92s
Add					
3 Add +1 Filter +1	1. 75s	1.51s	1.71s	1.75s	1.90s
Add					

B. 10 Step Test Results

In each of the 10 steps, 90% of the previews were within 2s and 10% were longer than 2s but less than 3s.

	2 Add +5 Filter +3 Add									
Step 1 Preview	1.77s	Step 6	1.80s							
		Preview								
Step 2 Preview	1.80s	Step 7	1.76s							
		Preview								
Step 3 Preview	1.82s	Step 8	1.82s							
		Preview								
Step 4 Preview	1. 76s	Step 9	1. 99s							
		Preview								
Step 5 Preview	1.91s	Step 10	2. 22s							
		Preview								

C. 20 Step Test Results

Of the individual steps in the 20-step process, 40% of the step previews were within 2s and 60% of the step previews were within $2^{\circ}3s$.

	5 Add +5 Filtering +5 Add +5 Filtering									
Step 1	1. 98s	Step 11	2.06s							
Preview		Preview								
Step 2	1.67s	Step 12	2. 05s							
Preview	1 05	Preview	1 02 -							
Step 3	1. 95s	Step 13	1. 83s							
Preview		Preview								
Step 4	1. 97s	Step 14	2. 16s							
Preview		Preview								
Step 5	1. 66s	Step 15	1. 75s							

Preview		Preview	
Step 6 Preview	1.89s	Step 16 Preview	2.16s
Step 7 Preview	2.14s	Step 17 Preview	2. 00s
Step 8 Preview	2. 16s	Step 18 Preview	2. 15s
Step 9 Preview	2. 19s	Step 19 Preview	2. 06s
Step 10 Preview	2.08s	Step 20 Preview	2. 22s

4.3.2 Excel dataset

Test scenario description.

Upload Excel/csv files, pay attention to the upload time (upload, default), save time

(new_table_id).

Excel-based self-service datasets are all single-step, involving only one function point, including grouping summary, adding new columns, filtering, merging, and field settings, as described in Section 3.2.2 for detailed scenarios.

The test results are all single-user operations for the data processing user.

Order of magnitude description.

The amount of data to be uploaded in Excel/csv files is 10,00020/100 columns, 100,00020/100 columns, 300,00020E columns, 500,00020 columns, and the size should not exceed 100M.

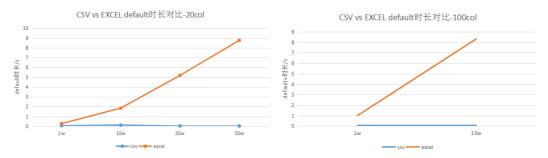
E Excel-based self-help dataset with 200, 10w, 30w data volumes.

Test results.

A. Excel/csv file upload

Excel files import about 95.2w cells per second.

The csv file imports about 555.56w cells per second.


The speed of re-uploading is almost indistinguishable from uploading an Excel dataset directly.

Excel files take about 1s for every 100w cells saved.

The upload time of csv file is about $4^{\sim}5$ times better than the upload time of Excel file (upload+default), and the main difference is in the default time.

Compared to the 0803 version, the 0901 directly connected Excel/csv dataset upload speed is 7 to 8 times faster.

Document Category	Number of rows	Number of columns	upload	default	new_table_id
csv	1w	20	0.04s	0.06s	0.16s
	10w		0.39s	0. 12s	0.19s
	30w		1.03s	0.03s	0. 29s
	50w		1.79s	0.03s	0.43s
	1w	100	0.17s	0.08s	0.17s
	10w		1.68s	0.08s	0. 52s
excel	1w	20	0.04s	0. 27s	0.18s
	10w		0. 32s	1.85s	0.23s
	30w		1.02s	5. 19s	0.35s
	50w		1.59s	8.76s	0.46s
	1w	100	0. 17s	0.99s	0.21s
	10w		1.73s	8. 32s	0.46s

B. Excel-based self-service dataset preview

A total of 22 preview lengths were measured, of which 86.56% of the scenes were

within 3s and 13.64% were greater than 3s.

Scenarios beyond the 3s are.

Scenes	Operation steps
Group summary-variance, de-weighted counts	Click to preview

Left-right merge - Left	Click to	
merge	preview	

The Excel-based self-service dataset shows little difference in performance compared to the previous version.

0901vs0803基于excel的数据集预览时长

4.4 Edit Preview Concurrent Tests

4.4.1 Test scenario description

Dashboard concurrency: 10 dashboard previews of a single scene; 50, 100, 150, 200 concurrent tests, concurrency lasts 10 minutes

Self-service data set concurrency: select 5 self-service data sets from the self-service data set single scenario: Edit-Preview Last Step - Exit Data Prep Preview; select 3 self-service data sets from the combined scenario: Edit-Preview Last Step

Step - Click on Step 2 Preview - Exit Data Prep Preview; Pick 2 selfservice datasets from the Excel dataset: Edit - Preview Last Step - Exit Data Prep Preview: Press test 10, 20, 30 concurrently, concurrently for 10 minutes

Hybrid scenario: 5 dashboards selected in dashboard concurrency, 2 selfservice datasets in single scenario, 2 self-service datasets in hybrid scenario, and 1 Excel dataset in self-service dataset concurrency; 10, 20, 30 concurrency tested, concurrency lasts 10 minutes

	Script scenario s
Dashboard concurrency	Log in only once and loop through the top 10 time consuming dashboards

Self-service data set concurrency	Log in only once and edit 10 self-help data sets in a loop
Mixed scenes	Log in only once, cycle through 5 self-service datasets + cycle through 5 dashboards

Concurrency Dashboard concurrency setting 50, 100, 150, 200 concurrency test; Self-service data set concurrency design 10, 20, 30 concurrency test; Combined scenario concurrency design 10, 20, 30 concurrency test.

Database usage] Concurrently, we use vertica database.

[Concurrency duration] The concurrency lasts 10 minutes.

[Concurrent start preparation] Restart the database and BI project after each concurrency.

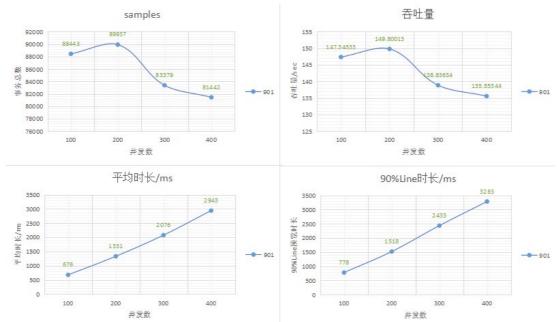
[Concurrent Cache Settings] Turn off cache for separate operations and turn on cache for concurrent operations.

4.4.2 Test

result 1.

Dashboard

Template	Table	Table	Table 3	Table 4	Table	Table	Table	Table 8	Table	Table	0ver
Name	1	2			5	6	7		9	10	a11
concurr	ent6	1186	2315	1560	1460	1006	300	905	400	455	1331
/ms											


single

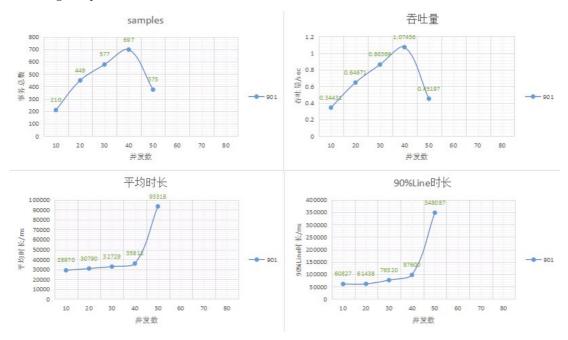
operation time

In terms of total number of transactions and throughput, the best performance in terms of throughput and total number of transactions is seen with 200 concurrency.

In terms of average time and 90%Line time, the time tends to increase significantly after 200 concurrency; the average time after 200 concurrency is significantly higher than the average time of separate operations.

Maximum 200 concurrency for the current scenario.

potential of data | Official website: www.finebi.com


2. Self-service data set concurrency

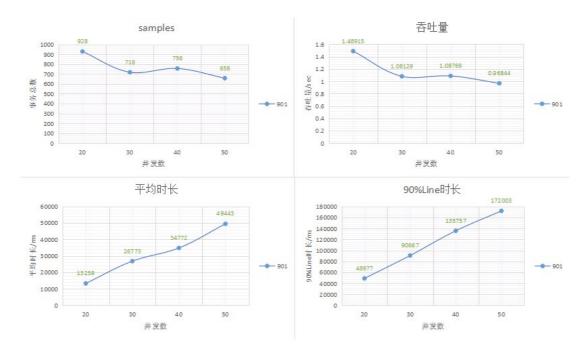
Duration of individual operation

0per	Acce	Go	Table	Table	Table	Table	Table	Go	Table	Table	Table	Go	Table	Table	0ver
atio	ss	to	1	2	3	4	5	to	6	7	8	to	9	10	all
n	to	Busi						Busi				Busi			
	data	ness						ness				ness			
	prep	Packa.						Packa.				Packa.			
	arat	ge 1						ge 2				ge 3			
	ion														
Dura	127	1442	7460	12601	8078	9628	1449	307	8480	1253	1467	280	1751	4359	3918
tion															
/ms															

In terms of total number of transactions and throughput, throughput and things always perform best when 40 concurrent.

In terms of average response time and 90%Line time, 40 the average time after concurrency is already significantly higher than the time of a single operation.

3. Hybrid scenario concurrency


Duration of individual operation

Name	Table	Table	Table	Table	Access	Access	Table	Table	Go	Table	Table	Access	Table	0ver
	1	2	3	4		to the		6	to	7		to the	9	all
						indust			Busi			indust		
					prepar	ry Service			ness			ry Service		
					ation	Package			Packa			Package		
						1			ge 2			3		
Durat	7279	3494	1323	1267	337	1365	14168	8172	370	10517	1752	278	8685	4241
ion														
/ms														

In terms of throughput and total number of transactions, there has been a decreasing trend, with the best performance in terms of throughput and total number of transactions when 20 concurrent.

In terms of average time and 90% LIne time, 20 the response time increases significantly after concurrency and is significantly higher than the response time of a single operation.

Overall, it seems that the optimal 20 concurrent.

4. Summary

Scenes	Maximum number of concurrenc y
Dashboard Preview	200
Mixed scenes	20
Self-service	40
dataset editing &	
preview	