Краткий ликбез по data warehouse
Потребность в КХД сформировалась примерно в 90-х годах прошлого века, когда в секторе enterprise стали активно использоваться разные информационные системы для учета множества бизнес-показателей. Каждое такое приложение успешно решало задачу автоматизации локального производственного процесса, например, выполнение бухгалтерских расчетов, проведение транзакций, HR-аналитика и т.д.
При этом схемы представления (модели) справочных и транзакционных данных в одной системе могут кардинально отличаться от другой, что влечет расхождение информации. Частично этот вопрос Data Governance мы затрагивали в контексте управления НСИ. Кроме того, большое разнообразие моделей данных затрудняет получение консолидированной отчетности, когда нужна целостная картина из всех прикладных систем. Поэтому возникли корпоративные хранилища данных (Data Warehouse, DWH) – предметно-ориентированные базы данных для консолидированной подготовки отчётов, интегрированного бизнес-анализа и оптимального принятия управленческих решений на основе полной информационной картины.
Принцип слоеного пирога или архитектура кхд
Вышеприведенное определение DWH показывает, что это средство хранения данных является реляционным. Однако, не стоит считать КХД просто большой базой данных с множеством взаимосвязанных таблиц. В отличие от традиционной SQL-СУБД, Data Warehouse имеет сложную многоуровневую (слоеную) архитектуру, которая называется LSA – Layered Scalable Architecture. По сути, LSA реализует логическое деление структур с данными на несколько функциональных уровней. Данные копируются с уровня на уровень и трансформируются при этом, чтобы в итоге предстать в виде согласованной информации, пригодной для анализа.
Классически LSA реализуется в виде следующих уровней:
- операционный слой первичных данных(Primary Data Layer или стейджинг), на котором выполняется загрузка информации из систем-источников в исходном качестве и сохранением полной истории изменений. Здесь происходит абстрагирование следующих слоев хранилища от физического устройства источников данных, способов их сбора и методов выделения изменений.
- ядро хранилища (Core Data Layer) – центральный компонент, который выполняет консолидацию данныхиз разных источников, приводя их к единым структурам и ключам. Именно здесь происходит основная работа с качеством данных и общие трансформации, чтобы абстрагировать потребителей от особенностей логического устройства источников данных и необходимости их взаимного сопоставления. Так решается задача обеспечения целостности и качества данных.
- аналитические витрины (Data Mart Layer), где данные преобразуются к структурам, удобным для анализа и использования в BI-дэшбордах или других системах-потребителях. Когда витрины берут данные из ядра, они называются регулярными. Если же для быстрого решения локальных задач не нужна консолидация данных, витрина может брать первичные данные из операционного слоя и называется соответственно операционной. Также бывают вторичные витрины, которые используются для представления результатов сложных расчетов и нетипичных трансформаций. Таким образом, витрины обеспечивают разные представления единых данных под конкретную бизнес-специфику.
- Наконец, сервисный слой (Service Layer) обеспечивает управление всеми вышеописанными уровнями. Он не содержит бизнес-данных, но оперирует метаданными и другими структурами для работы с качеством данных, позволяя выполнять сквозной аудит данных (data lineage), использовать общие подходы к выделению дельты изменений и управления загрузкой. Также здесь доступны средства мониторинга и диагностики ошибок, что ускоряет решение проблем.
LSA – слоеная архитектура DWH: как устроено хранилище данных
Все слои, кроме сервисного, состоят из области постоянного хранения данных и модуля загрузки и трансформации. Области хранения содержат технические (буферные) таблицы для трансформации данных и целевые таблицы, к которым обращается потребитель. Для обеспечения процессов загрузки и аудита ETL-процессов данные в целевых таблицах стейджинга, ядра и витринах маркируются техническими полями (мета-атрибутами). Еще выделяют слой виртуальных провайдеров данных и пользовательских отчетов для виртуального объединения (без хранения) данных из различных объектов. Каждый уровень может быть реализован с помощью разных технологий хранения и преобразования данных или универсальных продуктов, например, SAP NetWeaver Business Warehouse (SAP BW).
Data lake и корпоративное хранилище данных: как работать с big data
В 2010-х годах, с наступлением эпохи Big Data, фокус внимания от традиционных DWH сместился озерам данных (Data Lake). Однако, считать озеро данных новым поколением КХД не совсем корректно по следующим причинам:
- разное целевое назначение – DWH используется менеджерами, аналитиками и другими конечными бизнес-пользователями, тогда как озеро данных – в основном Data Scientist’ами. Напомним, в Data Lake хранится неструктурированная, т.н. сырая информация: видеозаписи с беспилотников и камер наружного наблюдения, транспортная телеметрия, графические изображения, логи пользовательского поведения, метрики сайтов и информационных систем, а также прочие данные с разными форматами хранения (схемами представления). Они пока непригодны для ежедневной аналитики в BI-системах, но могут использоваться Data Scientist’ами для быстрой отработки новых бизнес-гипотез с помощью алгоритмов машинного обучения;
- разные подходы к проектированию. Дизайн DWH основан на реляционной логике работы с данными – третья нормальная форма для нормализованных хранилищ, схемы звезды или снежинки для хранилищ с измерениями. При проектировании озера данных архитектор Big Data и Data Engineer большее внимание уделяют ETL-процессам с учетом многообразия источников и приемников разноформатной информации. А вопрос ее непосредственного хранения решается достаточно просто – требуется лишь масштабируемая, отказоустойчивая и относительно дешевая файловая система, например, HDFS или Amazon S3;
- наконец, цена – обычно Data Lake строится на базе бюджетных серверов с Apache Hadoop, без дорогостоящих лицензий и мощного оборудования, в отличие от больших затрат на проектирование и покупку специализированных платформ класса Data Warehouse, таких как SAP, Oracle, Teradata и пр.
Таким образом, озеро данных существенно отличается от КХД. Тем не менее, архитектурный подход LSA может использоваться и при построении Data Lake. Например, именно такая слоенная структура была принята за основу озера данных в Тинькоф-банке:
- на уровне RAW хранятся сырые данные различных форматов (tsv, csv, xml, syslog, json и т.д.);
- на операционном уровне (ODD, Operational Data Definition) сырые данные преобразуются в приближенный к реляционному формат;
- на уровне детализации (DDS, Detail Data Store) собирается консолидированная модель детальных данных;
- наконец, уровень MART выполняет роль прикладных витрин данных для бизнес-пользователей и моделей машинного обучения.
В данном примере для структурированных запросов к большим данным используется Apache Hive – популярное средство класса SQL-on-Hadoop. Само файловое хранилище организовано в кластере Hadoop на основе коммерческого дистрибутива от Cloudera (CDH). Традиционное DWH банка реализовано на массивно-параллельной СУБД Greenplum. От себя добавим, что альтернативой Apache Hive могла выступить Cloudera Impala, которая также, как Greenplum, Arenadata DB и Teradata, основана на массивно-параллельной архитектуре. Впрочем, выбор Hive обоснован, если требовалась высокая отказоустойчивость и большая пропускная способность. Возвращаясь к кейсу Тинькофф-банка, отметим, что BI-инструменты считывают данные из озера и классического DWH, обогащая типичные OLAP-отчеты информацией из хранилища Big Data. Это используется для анализа интересов, прогнозирования поведения, а также выявления текущих и будущих потребностей, которые возникают у посетителей сайта банка.
LSA-архитектура корпоративного Data Lake в Тинькоф-банке